Latent Fingerprint Segmentation with Adaptive Total Variation Model

Jiangyang Zhang1 \quad Rongjie Lai2 \quad C.-C. Jay Kuo1

1Ming Hsieh Department of Electrical Engineering
University of Southern California

2Department of Mathematics
Three types of Fingerprint Images

1. Rolled
2. Plain
3. Latent

Fingerprint Segmentation

Foreground (Fingerprint)

Background (Noise)
LATENT FINGERPRINT SEGMENTATION
THE CHALLENGE

Six types of Structured Noise

Signal << Noise
Fingerprint (Weak) Structured Noise (Strong)
Segmentation features (*mean, coherence, variance*) used for rolled/plain fingerprints fail to work on latent fingerprints.
THE TOTAL VARIATION (TV) MODEL

The TV-Decomposition Problem

Split a given image f into 2 layers:
1. Structural Layer (cartoon u)
2. Textural Layer (texture v)

\[f = u + v \]

- f: Observed Image (Texture + Noise)
- u: Cartoon (Object hues and sharp edges)
- v: Texture (Repeated structure of small patterns)
THE TOTAL VARIATION (TV) MODEL

The TV Model

\[
\min_{u \in BV} \left\{ \int |\nabla u| \, dx + \frac{\lambda}{2} \|u - f\|_{L^2}^2 \right\}
\]

Total Variation: Measures the amount of oscillation in \(u(x) \).
Fidelity Term: How close is \(u \) from the original image \(f \)?
\(\lambda \): Tuning parameter, \(\lambda \geq 0 \).

Applications
Denoising, Deblurring, Decomposition, Inpainting…
TV-L1 MODEL

MULTISCALE FEATURE SELECTION

TV-L1 Model:

\[
\min_u \int |\nabla u| + \lambda \int |u - f| \, dx
\]

Parameter \(\lambda \) controls the scale of extracted features in \(v \).

Original Image \(f \)

- \(u \) (\(\lambda = 0.10 \))
- \(u \) (\(\lambda = 0.30 \))
- \(u \) (\(\lambda = 0.70 \))

- \(v \) (\(\lambda = 0.10 \))
- \(v \) (\(\lambda = 0.30 \))
- \(v \) (\(\lambda = 0.70 \))

- **u**: Cartoon layer
- **v**: Texture layer

Image Source: USC
TV MODEL FOR LATENT SEGMENTATION

THE PROBLEM

Two Problems

1. Small scale Structured Noise

- Text Letters
- Lines
- Dots & random noises

STILL LEFT

2. Boundary Signal

- u
- v
Our Proposed Model

\[\min_u \int |\nabla u| + \int \lambda(x) |u - f| \, dx \]

TV term \hspace{2cm} Spatially Variant Fidelity term

Spatially varying fidelity \(\lambda(x) \)

Large \(\lambda(x) \) => Most textures stay in \(u \)
Small \(\lambda(x) \) => Small scale textures start to vanish
All textures disappear in \(u \)
SOLUTION TO PROPOSED MODEL

Difficulty in solving TV-based models

- The total variation norm is **NOT differentiable**.

\[
\min_u \int |\nabla u| + \int \lambda(x) |u - f| \, dx
\]

TV term

Existing numerical algorithms

1. Gradient descent.
2. Split Bregman Iteration.
3. Duality-based methods.
 - CGM dual method, Chambolle’s dual method
4. Splitting and penalty based methods.
 - Augmented Lagrangian method.
Augmented Lagrangian of ATV-L1 Model:

Adaptive TV-L1 Model (ATV-L1):

\[
\min_{x} f(x) \quad \text{subject to } c_i(x) = 0
\]

is turned into minimizing the augmented Lagrangian:

\[
L_A(x, \lambda; \mu) \triangleq f(x) - \sum_i \lambda_i c_i(x) + \frac{\mu}{2} \sum_i c_i^2(x)
\]

Algorithm 1. Augmented Lagrangian method for our proposed adaptive TV-L1 model.

1. Initialization:
 \[u^0 = 0, \ p^0 = 0, \ v^0 = 0; \]

2. For \(k = 1, 2, \ldots, \) compute:
 \[
 (u^k, p^k, v^k) = \underset{(u, p, v)}{\arg\min} \Sigma(u, p, v, \lambda_p, \lambda_v) \quad (5)
 \]

3. Update:
 \[
 \begin{align*}
 \lambda_{p}^{k+1} &= \lambda_{p}^{k} + r_{p}(p^{k} - \nabla u^{k}) \\
 \lambda_{v}^{k+1} &= \lambda_{v}^{k+1} + r_{v}(v^{k} - u^{k})
 \end{align*}
 \]
PARAMETER ESTIMATION

\[\min_u \int |\nabla u| + \int \lambda(x) |u - f| \, dx \]

TV term \hspace{2cm} **Spatially Variant Fidelity term**

Question: How do we choose \(\lambda(x) \)?

Goal: Extract fingerprint to \(v \), keep noise in \(u \).

<table>
<thead>
<tr>
<th>Region</th>
<th>Important aspect for cartoon layer (u)</th>
<th>Ideal (\lambda(x))</th>
<th>Content in texture layer (v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fingerprint</td>
<td>Smoothness</td>
<td>Small</td>
<td>Texture extracted to (v)</td>
</tr>
<tr>
<td>Noise</td>
<td>Fidelity</td>
<td>Large</td>
<td>Noise kept away from (v)</td>
</tr>
</tbody>
</table>
When a region is filtered by a low-pass filter:

- **Edge/Smooth**: small decrease in local total variation (LTV).
- **Texture**: large decrease in LTV.

\[
L_\sigma(\xi) = \frac{1}{1 + (2\pi\sigma |\xi|)^4}
\]

Differential LTV Reduction Rate

- Describes the oscillatory behavior of the local texture at scale σ.
- Fingerprint regions have a sharp peak at $\sigma = 2.0$.

Definition

\[
\eta_\sigma = \frac{LTV(L_\sigma * f) - LTV(L_{\sigma-1} * f)}{LTV(f)}
\]

Finally we take:

\[
\lambda(x) = \kappa \cdot \frac{1}{\eta_c(x) + \epsilon}
\]

(c is chosen as 2.0)
After Decomposition by Adaptive TV-L1 Model:

- Cartoon u: structured noise + small scale structures.
- Texture v: fingerprint + small amount of noise. Noise with high variance is removed, variance feature can be used for segmentation.
Experimental Results

Experimental Data
NIST SD27 Database, 258 latent fingerprint images

Texture Layer v (\(\lambda=0.50\))
Non-adaptive TV-L1

Texture Layer v
Proposed Adaptive TV-L1
Top Left: Original Image
Top Right: λ Map
Bottom Left: Texture ν
Bottom Right: Seg Result

RESULTS
RESULTS

Top Left: Original Image
Top Right: λ Map
Bottom Left: Texture v
Bottom Right: Seg Result
Adaptive TV-L1 Model

$$\min_u \int |\nabla u| + \int \lambda(x) |u - f| \, dx$$

- Decompose a latent fingerprint image into two layers and effectively locate the region-of-interest (ROI).
- Fidelity weight coefficient $\lambda(x)$ is automatically adapted to the background noise level.

Future Work

- Performance benchmarking for segmentation.
- Further exploit the ridge orientation information of fingerprints. Isotropic TV Model \rightarrow Anisotropic TV Model.
ACKNOWLEDGEMENTS
QUESTIONS?
TV-L1 MODEL
MULTISCALE FEATURE SELECTION

λ increases
Smaller features appear in v

Original Image f

u (λ=0.10) u (λ=0.30) u (λ=0.70)

v (λ=0.10) v (λ=0.30) v (λ=0.70)

u: Cartoon layer
v: Texture layer
TV-L1 MODEL
MULTISCALE FEATURE SELECTION

TV-L1 Model:
\[
\min_u \int |\nabla u| + \lambda \int |u - f| \, dx
\]

Parameter \(\lambda \) controls the scale of extracted features in \(v \).

Original Image \(f \)

Small \(\lambda \)

Large \(\lambda \)

Cartoon \(u_i \)

Texture \(v_i = f - u_i \)

Feature \(u_{i+1} - u_i \)